Giulio_M Bobi partendo da cos(theta) = ab/(||a|| ||b||): a * b = 2 * (-1) + 3 * 1 + (-1) * 2 = -1 ||a|| = √(4+9+1) = √14 ||b|| = √(1+1+4) = √6 Quindi: cos(theta) = -1/(√14 * √6) = -0,10911, arccos(-0,10911) = 1,6801 rad ovvero 96,26°
zeunig356 il prodotto scalare é a * b = 2 * (-1) + 3 * 1 + (-1)*2 = -2 + 3 - 2 = -1 i moduli sono sqrt (4 + 9 + 1) e sqrt (1 + 1 + 4) il loro prodotto é sqrt(14 * 6) = sqrt(84) teta = arc cos (-1/sqrt(84)) = 96.24°